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Abstract. In this paper we introduce new series of mean outer and
inner radii, which are defined as the outer (respectively, inner) radius of,
either the projection of the convex body onto an i-dimensional subspace,
or the i-dimensional section, 1 ≤ i ≤ n, averaged over the Grassmannian
manifold, and with respect to the Haar probability measure. We study
some properties of these new functionals, establishing inequalities among
them, as well as their relation with other measures as the volume or the
quermassintegrals.

1. Introduction and notation

The setting of this paper will be the family of compact and convex sets
with non-empty interior in the n-dimensional Euclidean space Rn. We will
call them convex bodies, and the family of all convex bodies will be denoted
by Kn. Let 〈 ·, ·〉 and | · | be the standard inner product and the Euclidean
norm in Rn, respectively. We denote the n-dimensional unit ball by Bn and
its boundary, i.e., the (n− 1)-dimensional unit sphere, by Sn−1.

The volume of a set M ⊂ Rn, i.e., its n-dimensional Lebesgue measure, is
denoted by vol(M) (or voln(M) if the distinction of the dimension is needed)
and, in particular, we write κn = vol(Bn).

The set of all i-dimensional (linear) subspaces of Rn will be denoted by
Ln

i ; in the same way, for L ∈ Ln
i , we will write for short Ln

j (L), j < i, to
denote the set of all j-dimensional (linear) planes of Rn which are contained
in L. We will denote by νn,i the unique Haar probability measure on Ln

i
invariant under orthogonal maps. Moreover, we will write νL,j if we work
with the Grassmannian manifold Ln

j (L) restricted to a fixed subspace L.
Further, if K ∈ Kn, the orthogonal projection of K onto L will be denoted
by K|L, and by L⊥ ∈ Ln

n−i we will represent the orthogonal complement of
L. By lin{u1, . . . , um} we denote the linear hull of the vectors u1, . . . , um.

A convex body K ∈ Kn can be represented by real functions in several
ways. Two of them are the support function, of great importance in the
Brunn-Minkowski theory, and the radial function, a crucial notion in the
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dual Brunn-Minkowski theory. They are defined in the following way: for
u ∈ Sn−1, the support function of K ∈ Kn in the direction u is given by

h(K, u) = max
{
〈x, u〉 : x ∈ K

}
,

whereas, if K contains the origin 0, its radial function is

ρ(K, u) = max{λ ≥ 0 : λu ∈ K}.

The normalized average of the support function on the sphere

b(K) =
2

nκn

∫
Sn−1

h(K, u) du,

where du stands for the (n− 1)-dimensional (spherical) Lebesgue measure,
is the mean width of K ([13, p. 50]).

If 0 ∈ K and we replace in the above integral the support function by the
radial function, we get the normalized average length `(K) of chords of K
through the origin, namely,

`(K) =
2

nκn

∫
Sn−1

ρ(K, u) du.

Within the (dual) Brunn-Minkowski theory, (κn/2)b(K) is (up to normaliza-
tion) the (n−1)-st quermassintegral of K ([13, (5.57)]), whereas (κn/2)`(K)
coincides with the so-called (n− 1)-st dual quermassintegral of K. We refer
the reader to Section 3, where we will introduce these notions.

The diameter, minimal width, circumradius and inradius of a convex body
K are denoted by diam(K), ω(K), R(K) and r(K), respectively. For infor-
mation on these functionals and their properties we refer to [2, pp. 56–59].
If K is contained in an affine subspace A of dimension k, we write r(K;A)
and ω(K;A) to denote the inradius and the minimal width of K calculated
in the corresponding ambient space Rk (where we identify A with Rk).

In this paper we introduce four new families of averages of (appropriate)
radii associated to a convex body K ∈ Kn.

Definition 1.1. For K ∈ Kn and i = 1, . . . , n, the i-th mean outer radius
and the i-th mean inner radius of K with respect to projections are defined,
respectively, as

R̃π
i (K) =

∫
Ln

i

R(K|L) dνn,i(L), r̃π
i (K) =

∫
Ln

i

r(K|L;L) dνn,i(L).

Definition 1.2. For K ∈ Kn and i = 1, . . . , n, the i-th mean outer radius
and the i-th mean inner radius of K with respect to sections are defined,
respectively, as

R̃σ
i (K) =

∫
Ln

i

max
x∈L⊥

R
(
K ∩ (x + L)

)
dνn,i(L),

r̃σ
i (K) =

∫
Ln

i

max
x∈L⊥

r
(
K ∩ (x + L);x + L

)
dνn,i(L).
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For the sake of brevity we will refer to R̃π
i (K) (respectively, r̃π

i (K)) as
mean projection outer (respectively, inner) radii. Analogously, R̃σ

i (K) (and
r̃σ
i (K)) will be referred to as mean section outer (inner) radii.

We observe that the above definitions make sense because the functionals
appearing inside the integrals are continuous, and so we can integrate over
the Grassmannian. Definitions 1.1 and 1.2 are the natural notions that may
arise from some series of outer and inner radii which are well-known in the
literature: for K ∈ Kn and i = 1, . . . , n, we write

(1.1) Rπ
i (K) = min

L∈Ln
i

R(K|L), rπ
i (K) = min

L∈Ln
i

r(K|L;L)

and, using sections,

Rσ
i (K) = min

L∈Ln
i

max
x∈L⊥

R
(
K ∩ (x + L)

)
,

rσ
i (K) = min

L∈Ln
i

max
x∈L⊥

r
(
K ∩ (x + L);x + L

)
.

(1.2)

From the definition it trivially follows that Rπ
n(K) = Rσ

n(K) = R(K),
rπ
n(K) = rσ

n(K) = r(K) and Rπ
1 (K) = Rσ

1 (K) = ω(K)/2 = rπ
1 (K) = rσ

1 (K).
Replacing in the above definitions the min-condition by a max-condition,

four additional series of successive outer and inner radii can be obtained,
say, Rπ

i (K), rπ
i (K), Rσ

i (K) and rσ
i (K), respectively. We observe that now,

replacing ‘min’ by ‘max’ in (1.1), leads to Rπ
1 (K) = diam(K)/2 = rπ

1 (K)
(and analogously for sections).

As we did in Definitions 1.1 and 1.2, the notation here has been chosen so
that a π symbol indicates that we are using projections, whereas a σ means
that we are dealing with sections.

It is easy to check that all the above types of outer radii are increasing
in i, whereas the inner radii are decreasing in i for 1 ≤ i ≤ n. The first
systematic study of these families of successive radii was developed in [1].
For more information on these radii and their relation with other measures,
we refer, among others, to [1, 3, 5, 6, 8, 9] and the references inside.

In view of (1.1), (1.2) and the corresponding notions via maxima, it was
natural to consider the mean outer and inner radii provided in Definitions 1.1
and 1.2. The immediate relations

rπ
i (K) ≤ r̃π

i (K) ≤ rπ
i (K), Rπ

i (K) ≤ R̃π
i (K) ≤ Rπ

i (K) and

rσ
i (K) ≤ r̃σ

i (K) ≤ rσ
i (K), Rσ

i (K) ≤ R̃σ
i (K) ≤ Rσ

i (K),

i = 1, . . . , n, are obvious, and thus, one of the main aims for introducing
these new notions is the possibility to strengthen existing inequalities among
the classical radii.

In this paper we investigate basic properties of these new radii, aiming
to use them to improve or better understand some of the already known
inequalities, which involve radii, or to prove new ones.
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2. First properties of the mean radii

It follows from Definitions 1.1 and 1.2 that

R̃π
n(K) = R̃σ

n(K) = R(K), r̃π
n(K) = r̃σ

n(K) = r(K)

and, moreover,

R̃π
1 (K) =

1
2
b(K) = r̃π

1 (K).

The latter follows from the observation that for any one dimensional linear
subspace L ∈ Ln

1 , r(K|L) = R(K|L) = ω(K|L)/2.
The case of R̃σ

1 and r̃σ
1 will need a further definition. We recall that the

difference body of a convex body K is the Minkowski sum DK := K −K =
K + (−K), where −K = {−x ∈ Rn : x ∈ K}.

Lemma 2.1. Let K ∈ Kn be a convex body. Then

R̃σ
1 (K) = r̃σ

1 (K) =
1
4

`(DK).

Proof. Let K ∈ Kn be a convex body and let L = lin{u} ∈ Ln
1 , with

u ∈ Sn−1. It is known ([13, p. 529]) that the length of a longest chord of K
in direction u coincides with ρ(DK, u). In other words, we have

ρ(DK, u) = max
x∈L⊥

vol1
(
K ∩ (x + L)

)
= 2 max

x∈L⊥
R
(
K ∩ (x + L)

)
.

Then, integrating over the Grassmannian Ln
1 , we get

R̃σ
1 (K) =

∫
Ln

1

max
x∈L⊥

R
(
K ∩ (x + L)

)
dνn,1(L)

=
1
2

∫
{lin{u}:u∈Sn−1}

ρ(DK, u) dνn,1

(
lin{u}

)
=

1
2 nκn

∫
Sn−1

ρ(DK, u) du =
1
4

`(DK).

The case of the mean section inner radius r̃σ
1 (K) is analogous, just using

that ρ(DK, u) = 2 maxx∈L⊥ r
(
K ∩ (x + L);x + L

)
. �

Next we consider the monotonicity of the families of mean projection and
section outer and inner radii in the dimension i of the Grassmannian where
the average is taken.

Proposition 2.1. Let K ∈ Kn be a convex body. Then, for any 2 ≤ i ≤ n,
R̃π

i−1(K) ≤ R̃π
i (K) and R̃σ

i−1(K) ≤ R̃σ
i (K). Moreover r̃π

i−1(K) ≥ r̃π
i (K) and

r̃σ
i−1(K) ≥ r̃σ

i (K).

Proof. First we deal with the mean projection radii. Let L ∈ Ln
i , with

i ≥ 2. Then, for any (i − 1)-dimensional subspace L′ of L, it is clear that
R(K|L′) ≤ R(K|L). Thus∫

Ln
i−1(L)

R(K|L′) dνL,i−1(L′) ≤ R(K|L),
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and hence ∫
Ln

i

∫
Ln

i−1(L)
R(K|L′) dνL,i−1(L′) dνn,i(L)

≤
∫
Ln

i

R(K|L) dνn,i(L) = R̃π
i (K).

By the uniqueness of the Haar probability measure on Ln
i−1, the integral on

the left hand side of the previous inequality is∫
Ln

i−1

R(K|L′) dνn,i−1(L′) = R̃π
i−1(K).

The inradius case is analogous just noticing that r(K|L′;L′) ≥ r(K|L;L) for
any (i− 1)-dimensional subspace L′ of L.

In the case of the mean section outer radii, we observe that if L ∈ Ln
i ,

i ≥ 2, and L′ ∈ Ln
i−1(L), then for every vector x ∈ (L′)⊥ there exists zx ∈ L⊥

such that x + L′ ⊂ zx + L. Thus

max
x∈(L′)⊥

R
(
K ∩ (x + L′)

)
≤ max

x∈L⊥
R
(
K ∩ (x + L)

)
and hence, using again the uniqueness of the Haar probability measure on
Ln

i−1, we get

R̃σ
i−1(K) =

∫
Ln

i−1

max
x∈(L′)⊥

R
(
K ∩ (x + L′)

)
dνn,i−1(L′)

=
∫
Ln

i

∫
Ln

i−1(L)
max

x∈(L′)⊥
R
(
K ∩ (x + L′)

)
dνL,i−1(L′) dνn,i(L)

≤
∫
Ln

i

max
x∈L⊥

R
(
K ∩ (x + L)

)
dνn,i(L) = R̃σ

i (K).

The same argument works for the inner radii r̃σ
i , just observing that, follow-

ing the above notation,

max
x∈(L′)⊥

r
(
K ∩ (x + L′);x + L′

)
≥ max

x∈L⊥
r
(
K ∩ (x + L);x + L

)
.

Indeed, if x0 + r
(
K ∩ (x + L);x + L

)
Bi ⊂ K ∩ (L + x), with x0 ∈ L⊥, then

there exists x̄0 ∈ (L′)⊥ so that x0+r
(
K∩(x+L);x+L

)
Bi−1 ⊂ K∩(L′+x̄0),

which shows the above inequality. �

Therefore we have the chains of inequalities

r(K) = r̃π
n(K) ≤ · · · ≤ r̃π

1 (K) =
1
2
b(K) = R̃π

1 (K) ≤ · · · ≤ R̃π
n(K) = R(K)

and

r(K) = r̃σ
n(K) ≤ · · · ≤ r̃σ

1 (K) =
1
2

`(DK) = R̃σ
1 (K) ≤ · · · ≤ R̃σ

n(K) = R(K).
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At this point we would like to observe that in [15], Zindler provided an
example of a 3-dimensional convex body so that

min
L∈L3

2

max
x∈L⊥

R
(
K ∩ (x + L)

)
< min

L∈L3
2

R(K|L),

which raises the question whether there exists K ∈ Kn with

R̃σ
i (K) < R̃π

i (K).

Next property relates the mean outer and inner radii when the projec-
tions are taken onto subspaces of appropriate dimensions (analogously for
sections). The corresponding result for classical radii was proved in [1,
Lemma 2.1].

Lemma 2.2. Let K ∈ Kn be a convex body. Then R̃π
i (K) ≥ r̃π

n−i+1(K) and
R̃σ

i (K) ≥ r̃σ
n−i+1(K) for 1 ≤ i ≤ n.

Proof. Let Li ∈ Ln
i and Ln−i+1 ∈ Ln

n−i+1 be such that R̃π
i (K) = R(K|Li)

and r̃π
n−i+1(K) = r(K|Ln−i+1;Ln−i+1). We observe that these subspaces

exist because the Grassmannian is a connected space and the functions

Ln
i −→ Kn, L 7→ K|L,

for i = 1, . . . , n, are continuous with respect to the usual metric in the
Grassmannian.

Then, since there exists L1 ∈ Ln
1 (Ln−i+1 ∩ Li),

R̃π
i (K) = R(K|Li) ≥ R(K|L1) = r(K|L1;L1) ≥ r(K|Ln−i+1;Ln−i+1)

= r̃π
n−i+1(K).

Using that the functions Ln
i −→ Kn, L 7→ maxx∈L⊥ R

(
K ∩ (L + x)

)
and

L 7→ maxx∈L⊥ r
(
K ∩ (L + x);x + L

)
are continuous, the same argument

yields the statement for mean section radii. �

3. Inequalities for the mean radii involving other functionals

Given a convex body K ∈ Kn and a non-negative real number λ, the
volume of the Minkowski sum (vectorial addition) K + λBn is expressed as
a polynomial of degree n in λ, namely,

vol(K + λBn) =
n∑

i=0

(
n

i

)
Wi(K)λi,

which is called the (classical) Steiner formula of K (see [14]). The coefficients
Wi(K) are the quermassintegrals of K, and they are a special case of the
more general defined mixed volumes for which we refer to [13, Section 5.1].
In particular, W0(K) = vol(K), nW1(K) = S(K) is the classical surface
area of K, (2/κn)Wn−1(K) = b(K) and, moreover, Wn(K) = κn.

The so-called dual quermassintegrals of a convex body K containing the
origin arise when the volume of the radial sum of K and a ball λBn is
considered. We observe that the radial sum is defined for more general sets
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than just convex bodies containing the origin, although we will not work in
this setting here. Given K, L ∈ Kn containing the origin, the radial sum
K+̃L, is the set, not necessarily convex, whose radial function is given by
ρ(K+̃L, u) = ρ(K, u) + ρ(L, u) for every u ∈ Sn−1. Then the volume of
K+̃λBn is also a polynomial, namely

vol(K+̃λBn) =
n∑

i=0

(
n

i

)
W̃i(K)λi,

and the coefficients W̃i(K) are the dual quermassintegrals of K. Further,
W̃0(K) = vol(K), W̃n(K) = κn and 2/κnW̃n−1(K) = `(K). The so-called
dual Brunn-Minkowski theory, was first introduced by Lutwak in [10, 11].
We refer the reader to [13, s. 9.3] for more details on this theory.

In the following, we will also use the inequalities

(3.1) r(K)Wi(K) ≤ Wi−1(K) ≤ R(K)Wi(K),

for 1 ≤ i ≤ n. Since, up to translations, r(K)Bn ⊂ K and K ⊂ R(K)Bn

these inequalities are a direct consequence of the monotonicity and the ho-
mogeneity of the quermassintegrals (cf. e.g. [7, Theorem 6.1.3]). We observe
that the analogous inequalities for dual quermassintegrals require the as-
sumption that one of the largest balls contained in K, as well as the smallest
ball containing K, are centered at 0. We will not make use of this fact.

First, using Urysohn’s inequality

vol(K) ≤ κn

(
b(K)

2

)n

(see e.g. [13, (7.21)]) and the identity b(K)/2 = R̃π
1 (K), the volume and

the first mean projection outer radius can be related. Now, using the mono-
tonicity in i of the mean projection radii, proven in Proposition 2.1, as well
as the relation Wn−1(K)/κn = b(K)/2, we can directly link the volume and
the last but one quermassintegral with all mean projection outer radii. The
equality cases follow from the equality case in Urysohn’s inequality.

Corollary 3.1. Let K ∈ Kn. Then

vol(K) ≤ κnR̃π
1 (K) . . . R̃π

n(K),

Wn−1(K) ≤ κn

n

(
R̃π

1 (K) + · · ·+ R̃π
n(K)

)
.

Equality holds in the first inequality if and only if K is a ball. Balls also
attain equality in the second inequality.

In view of this corollary we conjecture the following result. We just in-
troduce an additional notation: for x1, . . . , xm ∈ R let

si (x1, . . . , xm) =
∑

J⊆{1,...,m}
#J=i

∏
j∈J

xj
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denote the i-th elementary symmetric function of x1, . . . , xm, 1 ≤ i ≤ m,
setting s0 (x1, . . . , xm) = 1.

Conjecture 3.1. Let K ∈ Kn. Then, for any i = 0, . . . , n,

Wi(K) ≤ κn(
n
i

) sn−i

(
R̃π

1 (K), . . . , R̃π
n(K)

)
.

Equality holds if and only if K is a ball.

In the case of the mean projection inner radii, we obtain lower bounds
for all quermassintegrals of K. We notice that the case i = n− 1 is indeed
an equality (cf. Lemma 2.1), and hence we exclude it.

Proposition 3.1. Let K ∈ Kn. Then, for any i = 0, . . . , n− 2,

(3.2) Wi(K) ≥ κnr̃π
n−i(K)n−i.

Moreover, if K is 0-symmetric (i.e., so that K = −K), then

(3.3) W̃i(K) ≥ κnr̃σ
n−i(K)n−i.

Equality holds in both inequalities if and only if K is a ball.

Proof. The case i = 0, namely, vol(K) ≥ κnr(K)n is well-known (cf.(3.1)).
Therefore we assume that 1 ≤ i ≤ n− 2.

Kubota’s integral recursion formula (see e.g. [13, (5.72)]) ensures that

Wi(K) =
κn

κn−i

∫
Ln

n−i

voln−i(K|L) dνn,n−i(L),

and since by (3.1) we have voln−i(K|L) ≥ r(K|L;L)n−iκn−i, then

Wi(K) ≥ κn

∫
Ln

n−i

r(K|L;L)n−i dνn,n−i(L).

Finally, applying Hölder’s inequality (see e.g. [7, Corollary 1.5]) we can
conclude that

Wi(K) ≥ κn

(∫
Ln

n−i

r(K|L;L) dνn,n−i(L)

)n−i

= κnr̃π
n−i(K)n−i.

Equality holds, in particular, if and only if voln−i(K|L) = r(K|L;L)n−iκn−i

for all L ∈ Ln
n−i, i.e., if and only if K|L is an (n − i)-ball for all L ∈ Ln

n−i.
It is equivalent to the fact that K is a ball (see [4, Corollary 3.1.6]).

In analogy to Kubota’s formula, the dual quermassintegrals W̃i(K) admit
also an integral geometric representation as the means of the volumes of
sections (see e.g. [13, (9.38)]):

W̃i(K) =
κn

κn−i

∫
Ln

n−i

voln−i(K ∩ L) dνn,n−i(L), i = 1, . . . , n.

Again, by (3.1) we have

voln−i(K ∩ L) ≥ r(K ∩ L;L)n−iκn−i,
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and since K is 0-symmetric, the section K ∩ (x + L), x ∈ L⊥, having the
largest inradius is the central slice. It can be deduced as Brunn’s theorem
(see e.g. [12, Theorem 12.2.1]), because an even concave function is largest
at 0. Therefore we have

max
x∈L⊥

r
(
K ∩ (x + L);x + L

)
= r(K ∩ L;L)

which, together with Kubota’s formula yields

W̃i(K) ≥ κn

∫
Ln

n−i

max
x∈L⊥

r
(
K ∩ (x + L);x + L

)n−i dνn,n−i(L).

Applying again Hölder’s inequality we conclude that

W̃i(K) ≥ κnr̃σ
n−i(K)n−i.

Equality holds if and only if voln−i(K ∩ L) = r(K ∩ L;L)n−iκn−i for all
L ∈ Ln

n−i, i.e., if and only if K ∩ L is an (n− i)-ball for all L ∈ Ln
n−i. It is

equivalent to the fact that K is a ball (see [4, Corollary 7.1.4]). �

We observe that (3.3) (for convex bodies not-necessarily symmetric) can-
not be deduced from (3.2), because dual quermassintegrals and quermassin-
tegrals of convex bodies (containing the origin) are related by the inequality

W̃i(K) ≤ Wi(K)

(see e.g. [10, Corollary 1.4]).

Corollary 3.2. Let K ∈ Kn. Then, for any i = 0, . . . , n− 1,

(3.4) vol(K) ≥ κnr̃π
n−i(K)n−i r̃π

n(K)i

and
vol(K) ≥ κnr̃σ

n−i(K)n−i r̃σ
n(K)i.

Equality holds in both inequalities if and only if K is a ball.

Proof. (3.4) is a direct consequence of the inequality vol(K) ≥ r(K)iWi(K),
i = 0, . . . , n, (cf. (3.1)) and (3.2). Finally, since r̃π

i (K) ≥ r̃σ
i (K), 1 ≤ i ≤ n,

from (3.4) it follows the analogous result for the mean section inner radii. �

In particular, if n = 2 and i = 1 then (3.4) becomes

vol(K) ≥ κ2 r̃π
1 (K) r̃π

2 (K).

We conjecture that this also holds in any dimension. Namely:

Conjecture 3.2. Let K ∈ Kn. Then

vol(K) ≥ κnr̃π
1 (K) . . . r̃π

n(K).

Equality holds if and only if K is the ball.
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4. Mean radii and the Minkowski addition

As we have already seen, the difference body DK of a convex body K

happens to play a role in the definition of R̃σ
1 (K) and r̃σ

1 (K). This motivates
the next proposition, in which we obtain an inequality relating the mean
section inner radii with the volume of the difference body.

Proposition 4.1. Let K ∈ Kn. Then,

vol(DK) ≥ 2nκnr̃σ
1 (K)n, and

(4.1) vol(DK) ≥ 2nκnr̃σ
1 (K) . . . r̃σ

n(K).

Equality holds if and only if K is a ball.

Proof. One form of the so-called dual isoperimetric inequality (see e.g. [4,
(B.28)]) relates the volume of a convex body K (containing the origin) with
its the average length of chords: it states that

vol(K) ≥ κn

2n
`(K)n,

with equality if and only if K is a (centered) ball. Then, applying the above
inequality to DK (which contains the origin) and using Lemma 2.1, we get

vol(DK) ≥ κn

(
`(DK)

2

)n

= 2nκnr̃σ
1 (K)n.

Finally, the monotonicity of the mean inner radii (see Proposition 2.1) yields
inequality (4.1). The equality characterization follows from the equality case
in the dual isoperimetric inequality. �

In [5, Proposition 4.2] it was proven, among other results, that the clas-
sical radii Rπ

i satisfy

√
2

√
i + 1

i
Rπ

i (K) ≤ Ri(DK) ≤ 2Rπ
i (K).

Here we extend this type of result to some mean outer and inner radii.

Proposition 4.2. Let K ∈ Kn. Then, for any i = 1, . . . , n,

i)
√

2(i+1)
i R̃π

i (K) ≤ R̃π
i (DK) ≤ 2 R̃π

i (K),

ii) 2 r̃π
i (K) ≤ r̃π

i (DK) ≤ c(i) r̃π
i (K),

where

c(i) =

{
2
√

i for i odd,
2(i+1)√

i+2
for i even.

Proof. The behavior of the circumradius and the inradius with respect to
the Minkowski addition is well known (see e.g. [5, (2)]), namely,

(4.2) R(K + K ′) ≤ R(K) + R(K ′), r(K + K ′) ≥ r(K) + r(K ′),
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for K, K ′ ∈ Kn. Let L ∈ Ln
i . Then we trivially get

R(DK|L) = R(K|L−K|L) ≤ 2R(K|L) and

r(DK|L;L) = r(K|L−K|L;L) ≥ 2r(K|L;L),

and integrating over the Grassmannian Ln
i we obtain

R̃π
i (DK) ≤ 2R̃π

i (K) and r̃π
i (DK) ≥ 2̃rπ

i (K).

In order to prove the lower bound in i) and the upper bound in ii) we observe
that, since the diameter (respectively, the minimal width) of a 0-symmetric
set equals twice its circumradius (respectively, inradius), then,

R(DK|L) = R
(
D(K|L)

)
=

1
2
diam

(
D(K|L)

)
= diam

(
1
2
D(K|L)

)
and

r(DK|L;L) = r
(
D(K|L);L

)
=

1
2
ω
(
D(K|L);L

)
= ω

(
1
2
D(K|L);L

)
.

It is well-known (see e.g. [2, p. 79]) that both, the diameter and the minimal
width, are preserved under the transformation D(·)/2. Then, applying the
well-known Jung and Steinhagen inequalities (see e.g. [2, pp. 84 and 86]) in
dimension i to the above identities yields

R(DK|L) = diam
(

1
2
D(K|L)

)
= diam(K|L) ≥

√
2(i + 1)

i
R(K|L)

r(DK|L;L) = ω

(
1
2
D(K|L);L

)
= ω(K|L;L) ≤ c(i)r(K|L;L).

Integrating over the Grassmannian Ln
i we get the required inequalities. �

In the case of the mean section radii, the situation is more involved, and
we have only been able to settle the case i = 1 (the case i = n is trivial). For
a convex body K ∈ Kn we always have, by the definition of difference body,
that DDK = 2DK. Since r̃σ

1 (K) = `(DK)/4 (cf. Lemma 2.1), in order to
compute r̃σ

1 (DK) it suffices to use the homogeneity of `(K) to observe that

r̃σ
1 (DK) =

1
4
`(DDK) =

1
4
`(2DK) =

1
2
`(DK) = 2̃rσ

1 (K).

Analogously we get that

R̃σ
1 (DK) = 2R̃σ

1 (K).

We conclude the paper considering the Minkowski addition of two arbi-
trary convex bodies K, K ′, rather than K + (−K). In [5, Theorem 1.1], the
relation between certain classical radii and the Minkowski sum of convex
bodies was established. Here we extend that property to the mean radii.
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Proposition 4.3. Let K, K ′ ∈ Kn. Then, for any i = 2, . . . , n,

i) R̃π
i (K) + R̃π

i (K ′) ≥ R̃π
i (K + K ′) ≥

√
2

2

(
R̃π

i (K) + R̃π
i (K ′)

)
and

ii) r̃π
i (K) + r̃π

i (K ′) ≤ r̃π
i (K + K ′) ≤

√
2

2
(̃
rπ
i (K) + r̃π

i (K ′)
)
.

Moreover,

R̃π
1 (K + K ′) = R̃π

1 (K) + R̃π
1 (K ′),

r̃π
1 (K + K ′) = r̃π

1 (K) + r̃π
1 (K ′).

Proof. Let L ∈ Ln
i , 2 ≤ i ≤ n. On the one hand, using (4.2) we have that

R
(
(K + K ′)|L

)
= R(K|L + K ′|L) ≤ R(K|L) + R(K ′|L),

r
(
(K + K ′)|L;L

)
= r(K|L + K ′|L;L) ≥ r(K|L;L) + r(K ′|L;L).

On the other hand, in [5, Proofs of Theorems 1.1 and 1.2] it was proven that

R
(
(K + K ′)|L

)
≥
√

2
2
(
R(K|L) + R(K ′|L)

)
.

and

r
(
(K + K ′)|L;L

)
≤
√

2
2
(
r(K|L;L) + r(K ′|L;L)

)
.

Thus, integrating over the Grassmannian Ln
i the above four inequalities, we

get the result.
The last identities for the case i = 1 are a direct consequence of the fact

that the mean width is Minkowski additive. �
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